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Antecedents and Correlates of Improved
Cognitive Performance in Children Exposed
in Utero to Low Levels of Lead
by David Bellinger,*` Alan Leviton,*f and Jone Sloman"

Up to 2 years of age, children with umbilical cord blood lead levels of 10 to 25 4g/dL achieve significantly
lower scores on tests of cognitive development than do children with lower prenatal exposures. By age 5 years,
however, they appear to have recovered from, or at least compensated for, this early insult. Change in per-
formance between 24 and 57 months of age was examined in relation to level of postnatal lead exposure and
various sociodemographic factors Among children with high prenatal lead exposure, greater recovery of func-
tion was associated with lower blood level at 57 months, higher socioeconomic status, higher Home Observa-
tion for Measurement of the Environment scores, higher maternal IQ, and female gender. The difference be-
tween the scores at 57 months of children with optimal and less optimal values on these variables generally
exceed % standard deviation. Higher prenatal lead exposum is associated with an increased risk of early cognitive
deficit. Furthermore, the risk that a deficit will persist through the preschool years is increased among children
with high prenatal exposure and either high postnatal exposure or less optimal sociodemogaphic characteristics.

Introduction
In our prospective study of lead and cognitive develop-

ment, children with high umbilical cord blood lead levels
(10-25 Ag/dL) achieved significantly lower Mental Devel-
opment Index scores through 2 years of age than did infants
whose cord blood lead levels were low (< 3 ,g/dL) or med-
ium (6-7 jig/dL) (1). In contrast to the results of the infant
assessments, cord blood lead level was not significantly
related to children's performance on the McCarthy Scales
of Children's Abilities at age 57 months (2).
These data may be explained in several ways. First,

between 24 and 57 months of age, children recover from,
or at least compensate for, the insult represented by high
prenatal lead exposure. A variant of this is that the extent
of recovery or compensation varies among children. Such
a contingency might be difficult to appreciate using analytical
approaches that focus only on differences in the mean
recovery of groups defined by prenatal exposure level.

Finding that the likelihood of recovery is systematically
related to some characteristic or event would be particularly
important from the standpoint of intervention.

Alternatively, persisting impact of prenatal exposure is
obscured by variations among children in postnatal lead
exposure. Finally, the apparent attenuation of the associa-
tion between prenatal lead exposure and development is
a measurement artifact attributable to differences in the mix
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of cognitive skills that contribute to a child's scores on the
Bayley Scales and the McCarthy Scales. For instance, pre-
natal exposure may be associated with the skills assessed
by the Bayley Scales but not with skills assessed by the
McCarthy Scales.
To distinguish among these alternatives, experiences and

characteristics that correlate with change in performance
(both improvement and deterioration) need to be identified.
In this report, we describe our search for these covariates.

Methods
Sample and Data Collected
Of the original cohort of 249 children (3), 204 completed

the 24-month evaluation. No effort was made to assess at
57 months three children with serious medical problems
identified in the earlier phase of the study, and five sets
of twins. Of the 191 eligible children, we evaluated 170
(89.0%). The median age at assessment was 57.8 months.
Information on a range of potential covariates of lead

exposure and cognitive function were obtained (3). These
included demographics, reproductive history, exposures
during and characteristics of the index pregnancy, labor and
delivery, neonatal characteristics, and measures of child
rearing environment and practices. The outcomes consid-
ered here are a child's Mental Development Index (MDI)
score from the Bayley Scales of Infant Development (4)
at 24 months and General Cognitive Index (GCI) score from
the McCarthy Scales of Children's Abilities (5) at 57 months.

Capillary blood samples were collected when the children
were 6, 12, 18, and 24 months old and venous samples
when they were 57 months old. Analytical methods used
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to measure blood lead levels are described elsewhere (6,7).
In statistical analyses, postnatal blood lead levels were

treated as both continuously distributed and as categorical
variables. The same cutoff values used to classify cord blood
lead levels as low (<3 ,ug/dL) and high (-10 ,ug/dL) were
used to classify postnatal levels. Levels between 3 and 10
tg/dL were classified as medium.

Data Analysis
The null hypothesis is that changes in children's per-

formance between 24 and 57 months on global tests of cog-
nitive development are not related to prenatal lead exposure
(cord blood lead level); postnatal lead exposures; or socio-
demographic characteristics (family social class, Home
Observation for Measurement of the Environment [HOME]
score at 57 months, maternal IQ, gender, ethnicity, maternal
age).
Using population estimates for the mean and standard

deviation of MDI and GCI scores (100 and 16, respectively),
we computed children's z scores for both indices. Additional
analyses using sample-based estimates of mean and stan-
dard deviation (115.6 and 16A for MDI; 115.5 and 14.5 for
GCI) produced nearly identical results. As an index of a
child's developmental trajectory between 24 and 57 months,
change in z score (Az) was calculated as follows:

= ZGCI-57 -ZI-24
Thus, a child with a positive Az improved in performance
between 24 and 57 months of age.
Z transformations are necessary in order to compare

scores expressed on different scales. Because MDI and
GCI have the same expected mean and standard deviation,
the analyses reported could have been conducted on A
scores derived by computing the difference between a

child's MDI and GCI scores. The more general method

is used to illustrate its usefulness in identifying correlates
of performance change and because some additional analyses
reported involve scores measured on different scales.
The correlation between Az and MDI scores at 24 months

was large and negative in the full sample (-0.55) and within
each strata of cord blood lead (-0.62, -0.42, and -0.58
in the low, medium, and high groups, respectively). This
association, due at least in part to regression to the mean,
was not attributable to the disproportionate influence of
outlying observations. The relationship between Az and
MDI at 24 months is linear with approximately equal Az
variance for different values of MDI. A linear relationship
also held within each of the cord blood lead strata.
Therefore, in regression analyses of Az, MDI at 24 months,
a measure of initial value, was included as a predictor. To
assess the impact of adjusting Az for MDI, we compared
the coefficients assigned to variables in models without MDI
to coefficients assigned in models that included the MDI
term.
Because of potential problems due to multicollinearity,

the association between Az and each variable was adjusted
for MDI using both a one-stage and a two-stage procedure.
In the two-stage approach, Az was regressed on MDI alone
and the residuals regressed on the variable of interest. In
the one-stage approach, Az was regressed on both MDI
and the variable. The two approaches yielded virtually iden-
tical results. (Tables are available from the authors.)

Analysis proceeded in two phases: a) The association
between Az and each variable was examined by multiple
regression analysis in the complete sample. b) The extent
to which the association between Az and a variable differed
according to cord blood lead stratum was examined by
means of stratified analyses and by fitting regression models
that included the appropriate interaction term to the data
for the whole sample.

Table 1. Regression coefficients, standard errors (SE), and probability values for predictors
of Az in models with and without a term for MDI at 24 months.

Simultaneous adjustment
Unadjusted for MDI for MDI

Predictor Coefficient SE p Coefficient SE p
Blood lead
Corda 0.04 0.01 0.003 0.03 0.01 0.016
6 Monthsb -0.02 0.08 0.81 0.00 0.07 0.96
12 Months -0.03 0.08 0.75 -0.08 0.07 0.23
18 Months -0.22 0.09 0.018 -0.21 0.08 0.007
24 Months -0.23 0.09 0.012 -0.22 0.08 0.005
57 Months -0.17 0.12 0.16 -0.23 0.10 0.028

Covariates
HOME score 0.02 0.02 0.30 0.07 0.01 0.0001
Social classc -0.05 0.07 0.50 -0.22 0.06 0.0002
Maternal IQ 0.00 0.00 0.72 0.01 0.00 0.003
Maternal age 0.03 0.02 0.045 0.04 0.01 0.003
Genderd 0.05 0.14 0.72 0.18 0.12 0.13
Ethnicitye -0.41 0.31 0.18 0.15 0.27 0.57
aMeasured cord blood lead level, not category.
'Natural log of measured postnatal blood lead levels.
CHoflingshead Two-Factor Index Oower scores represent higher social class).
dMale coded 0; female coded 1.
eNonwhite coded 0; white coded 1.
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Results
Complete Sample
Both intrauterine and recent postnatal lead exposures are

associated with the amount and direction of change in chil-
dren's cognitive performance between ages 24 and 57
months (Table 1). The sign of the regression coefficient
for cord blood lead level (expressed as a continuous variable)
is positive, meaning that children with higher prenatal expo-

sures tended to have higher Az scores (reflecting greater
relative improvement). This is consistent with our previous
finding of attenuation by 57 months of the association
between prenatal exposure and cognitive development.
Using the regression coefficient of 0.03 assigned to cord

blood lead level (i.e., the slope of the regression of Az
against cord blood lead level) and the mean cord blood lead
levels of children in the low and high prenatal exposure
groups (1.8 and 14.6 fig/dL, respectively), the mean

changes in performance of children in these two groups can

be estimated. Among low lead children, the mean change
was +0.05 standard normal deviate units (0.03 x 1.8). On
an index with a standard deviation of 16, this corresponds
to +0.9 points (16 x0.05). Among high lead children, the
mean change was + 0.44 standard normal deviate units
(0.03 x 14.6) or + 7.0 points. Thus, the net gain of the high
lead children between 24 and 57 months was 6.1 points
(7.0 -0.9), a substantial percentage of their relative deficit
(7.8 points) at age 24 months (1).
The negative signs of the coefficients for blood lead level

at 18, 24, and 57 months indicate an inverse relationship
between Az scores and the children's lead levels at these
ages.
Az scores were also significantly related to various indi-

cators of sociodemographic status. Children with higher
HOME scores, higher social class, and more intelligent,
older mothers tended to have higher Az scores. Az was

not significantly associated with gender or ethnicity.
The impact of adjusting Az for MDI score at 24 months

is evident by comparing the coefficients in Table 1. Those
variables significantly associated with Az before adjustment
for MDI remained so when MDI was included in the model
(cord blood lead level, blood lead level at 18 and 24 months,
maternal age). Although adjustment had relatively little
impact on the magnitude of the coefficients, the standard
errors were reduced. For several other variables (blood
lead at 57 months, HOME score, social class, maternal IQ,
and gender), adjustment for MDI produced substantial
changes in the coefficient. Indeed, for all but gender, the
coefficient became statistically significant. The variable eth-
nicity, expressed as a dichotomy (white/nonwhite), not only
had the largest change in its coefficient, but the sign for
whites changed from negative to positive.
Thus, these analyses confirm our previous finding that

children with high cord blood levels showed substantial
improvement in performance between 24 and 57 months
and that development in this period was inversely related
to postnatal lead exposure. In addition, performance change
between 24 and 57 months bore the expected relationships
with sociodemographic factors, with more optimal values
associated with more positive change.

Stratification by Cord Blood Lead Group
For several variables (blood lead level at 57 months, social

class, maternal IQ, gender), the coefficient was considerably
larger among children with high cord blood lead level than
among children in the other prenatal exposure groups (Table
2). The p-value for cord blood lead level was considerably
more extreme among these children than among those in
the other groups, but this appears to be due mostly to dif-
ferences in the standard errors of the coefficients. The
restricted range of prenatal exposures among children in

Table 2. Regression coefficients, standard errors (SE), and probability values for predictors
of Az in each cord blood lead stratum.

Cord blood lead category
Low Medium High

Predictor Coefficient SE p Coefficient SE p Coefficient SE p
Blood lead
Corda 0.04 0.11 0.72 0.10 0.29 0.74 0.07 0.04 0.07
6 Monthsb -0.01 0.10 0.94 0.02 0.12 0.88 0.01 0.13 0.95
12 Months -0.18 0.09 0.063 0.03 0.13 0.84 -0.18 0.14 0.20
18 Months -0.13 0.09 0.16 -0.34 0.15 0.028 -0.16 0.16 0.33
24 Months -0.16 0.08 0.057 -0.31 0.16 0.065 -0.28 0.16 0.079
57 Months -0.16 0.14 0.26 -0.14 0.22 0.52 -0.46 0.18 0.013

Covariates
HOME score 0.03 0.02 0.26 0.13 0.04 0.001 0.07 0.02 0.002
Social classc -0.16 0.08 0.039 -0.12 0.12 0.29 -0.30 0.10 0.004
Maternal IQ 0.00 0.00 0.42 0.01 0.01 0.17 0.02 0.01 0.011
Maternal age 0.04 0.02 0.058 0.03 0.02 0.24 0.05 0.03 0.061
Genderd -0.04 0.16 0.81 0.02 0.23 0.94 0.55 0.22 0.017
Ethnicitye 0.04 0.27 0.88 0.37 0.60 0.54 -0.08 0.63 0.90
aMeasured cord blood lead level, not category.
bNatural log of measured postnatal blood lead levels.
CHoljngshead Two-Factor Index Gower scores represent higher social class).
dMale coded 0; female coded 1.
eNonwhite coded 0; white coded 1.
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the low and medium cord blood lead groups may have con-
tributed to differences across strata in the strength of the
association between cord blood lead level and Az.
The association between Az and blood lead level at 24

months was comparable in the three cord blood lead groups.
This reflects in part the fact that in the complete sample,
24-month blood lead level was more strongly associated
with GCI than was any other lead term. In this cohort, per-
formance at 57 months was related to level of lead exposure
at 24 months, regardless of a child's level of prenatal
exposure.
Gender is a particularly striking example of the depen-

dence of Az scores on level of prenatal exposure. The
scores of girls and boys were almost identical among chfldren
with either low or medium exposures. Among children with
high prenatal exposures, however, girls had appreciably
higher Az scores (Fig. 1).

Although the associations between Az and other variables
appear to depend on initial exposure status (i.e., cord blood
lead level), interaction terms constructed to assess the dif-
ferences were not statistically significant. The regression
coefficients for many of the variables differed significantly
from zero only within the high cord blood lead group, but
these did not necessarily differ significantly from the corre-
sponding coefficients in the other two cord blood lead strata.
For instance, in each stratum, children above the median
social class tended to have Az scores higher than those
of their peers below the median (Fig. 2). This social class
advantage was greatest, however, among children who had
high cord blood lead.
To understand in greater detail the correlates of per-

formance change among children with high cord blood lead
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FIGURE 1. Least squares mean Az scores for children stratified by cord
blood lead category and gender. Error bars represent one SE (and
for clarity are shown extending in one direction only). Means were

obtained by modeling Az score as a function of Mental Development
Index score at 24 months of age, cord blood lead category Oow,
medium, high), child gender, and the interaction between cord blood
lead category and child gender. The difference of 7.7 points between
the scores of boys and girls with high cord blood lead levels was ob-
tained by calculating the difference between the mean Az scores of
children in the two groups (0.48 standard normal deviate units) and
expressing it in terms of performance on a test with an SD of 16.
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FIGURE 2. Least squares mean Az scores for children stratified by cord
blood lead category and family social class. Error bars represent one
SE (and for clarity are shown extending in ohe direction only). Means
were obtained by modeling Az score as a function of Mental Develop-
ment Index score at 24 months of age, cord blood lead category (ow,
medium, high), family social class (above/below median), and the inter-
action between cord blood lead category and social class. The dif-
ference of 13.3 points between the scores of lower class and upper
class children with high cord blood lead levels was obtained by
calculating the difference between the mean Az scores of children
in the two groups (0.83 standard normal deviate units) and express-
ing it in terms of performance on a test with a SD of 16.

levels, we examined the least-squares mean Az scores in
different postnatal lead exposure and sociodemographic strata
(Table 3). For lead levels at 24 and 57 months and all
sociodemographic variables, children with more optimal
values had more positive Az scores than did children with
less optimal values. The differences in GCI scores for
children in different strata can be estimated using the tabled
values of Az. For instance, among children who had high
cord blood lead but low blood lead at 57 months, the mean
difference between GCI and MDI z scores was +042.
Among children with high blood lead levels on both occa-
sions, the mean difference was -0.15. Therefore, if two
children with high cord blood lead achieved the same MDI
score at 24 months, but one had a low blood lead level at
57 months while the other had a high level, the child with
lower exposure would be expected to have a GCI score that
is 0.57 standard normal deviate units higher (042 minus
-0.15). Viewed in terms of a standard deviation of 16, this
corresponds to a difference of 9.1 points.

Additional Analyses
We attempted to assess the extent to which the associa-

tions between Az scores and blood lead and sociodemo-
graphic characteristics reflect differences in the skills
measured by MDI and GCI scores rather than contingen-
cies that govern the persistence and recovery of early lead-
associated deficit. To make scores at 24 and 57 months
more closely resemble repeated measurements, each child
was assigned a nonverbal score based on his or her per-
formance on a set of 22 items typically administered as part

8
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Table 3. Means and standard errors (SE) of Az scores of children with high cord blood lead:
stratified by postnatal lead levels and sociodemographic variables.

Postnatal exposure group Difference in GCI scores of
PostnataLowMexposure grogplow/high or optimal/less

Predictor Low Medium High optimal groups

Blood lead
57 Monthsa Mean 0.42 0.15 -0.15 9.1

SE 0.29 0.15 0.21
24 Months Mean 0.55 0.06 -0.08 10.0

SE 0.22 0.13 0.23

Covariatesb More optimal Less optimal
HOME score Mean 0.49 -0.19 10.9

SE 0.14 0.12
Social class Mean 0.46 -0.37 13.2

SE 0.12 0.15
Maternal IQ Mean 0.39 -0.16 8.8

SE 0.13 0.14
Maternal age Mean 0.25 0.01 4.2

SE 0.14 0.15
Gender Mean 0.34 -0.14 7.7

SE 0.14 0.15
aNatural log of measured postnatal blood lead levels.
b "More optimal" defined as values above the median, as follows: HOME > 52; social class, class 1 in the Hollingshead Two-Factor Index; maternal

IQ >129; maternal age >30; gender, female is the optimal value.

of the Bayley Scales at age 24 months (#122-3, 125, 129,
131, 133-5, 137, 140, 142-3, 147, 151, 153-7, 159-61).
Most of these assess a child's visual-motor coordination
and integration skills (e.g., ability to copy block structures,
speed and accuracy in completing formboards, perception
of part-whole relationships). Sample-based estimates of
mean and standard deviation were used to transform the
total number of items passed to a z score. A Az score was
computed by subtracting this score from a sample-based
z score transformation of a child's score on the perceptual-
performance subscale of the McCarthy Scales. The set of
analyses described above were applied to these Az non-
verbal scores.
Among children with high cord blood lead levels, optimal

postnatal lead exposure and sociodemographic status were
associated with higher Az nonverbal scores (Table 4). In
general, the antecedents and correlates of Az nonverbal
scores are very similar to those noted for Az scores based
on MDI and GCI (Table 3). Additional tables (analogous
to Tables 1 and 2) are available from the authors.
These results with Az nonverbal scores should not be

viewed as a definitive test of the hypothesis that the pat-
tern of results observed in the main body of analyses is
due to differences in the mix of skills measured by the
Bayley Scales and McCarthy Scales. To the extent that we
can evaluate this hypothesis, however, the evidence sug-
gests that the improvement with time is not an artifact of
differences in testing instruments.

Discussion
An association between optimal sociodemographic char-

acteristics and reduced likelihood of poor outcome has been
demonstrated for many early nervous system insults, includ-
ing low birthweight (8,9), prenatal infection (10), failure to

thrive (11), and Down's Syndrome (12). A similar phenom-
enon has been observed with respect to lead exposure
(13-15). In previous analyses of our cohort, we reported
that in the second year of life, children from lower social
classes expressed deficit at lower levels of prenatal lead
exposure than did children from the highest social class (16).
These observations raise the question of whether chil-

dren's sociodemographic characteristics are also related to
the likelihood of recovery from a deficit already expressed.
The data pertaining to this issue are limited to studies show-
ing that at-risk infants who receive additional cognitive and/or
psychosocial stimulation fare better developmentally than
do children receiving only standard medical care (17-19).
Through the first 2 years of life, the children in our sample

with high cord blood lead levels achieved significantly lower
MDI scores than did children with lower prenatal exposures.
The association between high prenatal exposure and lower
performance persisted beyond age 2, although not as a main
effect. Rather, the degree to which deficit persisted varies
among subgroups of children with different sociodemo-
graphic characteristics and postnatal lead exposure profiles.
The associations between performance trajectory between
ages 24 and 57 months and several of these characteristics,
including high social class, high HOME score, and high
maternal IQ, are consistent with the hypothesis that envi-
ronmental enrichment facilitates the rate and extent of
recovery or compensation. The more positive develop-
mental trajectories displayed by girls is consistent with
previous suggestions that boys are at greater risk for many
neuropsychiatric adversities (20). Differences between chil-
dren with optimal and suboptimal covariate values tended
to be greater among children with high prenatal exposure
than among children with low or medium prenatal exposure.
Children already stressed by sociodemographic disadvan-
tages may be less able to weather the additional stress of
high prenatal lead exposure.

9
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Table 4. Means and standard errors (SE) of Az nonverbal scores of children with high cord blood lead:
stratified by postnatal lead levels and sociodemographic variables.

Difference in scores ofPostnatal exposure group low/high or optimal/less

Predictor Low Medium High optimal groups a

Blood lead
57 Monthsb Mean 0.61 0.19 -0.37 8.5

SE 0.33 0.17 0.25
24 Months Mean 0.93 -0.03 -0.20 9.8

SE 0.26 0.15 0.28

SociodemographicsC More optimal Less optimal
HOME score Mean 0.52 -0.28 7.0

SE 0.16 0.15
Social class Mean 0.43 -0.40 7.2

SE 0.15 0.19
Maternal IQ Mean 0.32 -0.14 4.0

SE 0.16 0.18
Maternal age Mean 0.25 -0.06 2.7

SE 0.17 0.19
Gender Mean 0.31 -0.17 4.2

SE 0.17 0.18
'Differences in scores on the perceptual-performance subscale of the McCarthy Scales of Children's Abilities at age 57 months, computed using

sample-based estimate of 8.7 as the standard deviation.
bNatural log of measured postnatal blood levels.
c "More optimal" defined as values above the median, as follows: HOME > 52; social class, class 1 in the Hollingshead Two-Factor Index; maternal

IQ >129; maternal age >30; gender, female is the optimal value.

"Less optimal" is somewhat of a misnomer in our rela-
tively advantaged cohort, referring only to values below
the median (see footnotes of Table 3 for criteria). Most
families classified as less optimal would probably be among
the most advantaged families in other lead study cohorts
(15,21). Our finding that chfldren from families with the most
optimal sociodemographic characteristics recover from the
insult of high prenatal lead exposure may be less relevant
to these other cohorts than is our finding that children with
less optimal values may continue to express some degree
of developmental deficit.
The rate of recovery may not be the same in different

cognitive domains. For instance, following nutritional rehab-
gitation, severely malnourished children show slower gains
im language than in visual-spatial skills (17). The association
between family characteristics and a child's response to
stress is not the same for all outcomes (22). We cannot
determine from our observations how rate of recovery from
early lead exposure may differ among cognitive and percep-
tual functions.

Summary
To date, we have observed the following associations

between lead exposure and development in our cohort: High
levels of prenatal lead exposure (> 10 ,ug/dL in cord blood)
are associated with less rapid cognitive development, at
least through 24 months of age (1). A substantial percentage
of children with high prenatal exposure contribute to this
association (23). Children below the median in social class
express deficit at lower levels of prenatal exposure than
do children from more socioeconomically advantaged families
(16).

At 57 months of age, the mean performance of children
with high prenatal exposure is indistinguishable from the
mean performance of children with lower prenatal exposure.
Performance at this age is, however, inversely related to
blood lead level measured at age 24 months (2). Children
with high prenatal exposure who also experience higher
levels of concurrent exposure or who have less favorable
sociodemographic characteristics (e.g., lower social class,
HOME score, or maternal IQ, male gender) do not improve
in performance between 24 and 57 months to the same
extent as children who have comparable levels of prenatal
lead exposure but are free of these additional adversities.
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